<track id="f5050"></track>
    <tr id="f5050"><nobr id="f5050"><delect id="f5050"></delect></nobr></tr>
        <menuitem id="f5050"><video id="f5050"></video></menuitem>
        1. <ins id="f5050"></ins>

        2. <ins id="f5050"><option id="f5050"></option></ins>

          1. <ins id="f5050"><acronym id="f5050"></acronym></ins>

            1. <tr id="f5050"></tr>
            2. <mark id="f5050"></mark>
              
              
            3. 
              
                <mark id="f5050"><track id="f5050"></track></mark>
              1. 
                
                <sup id="f5050"><small id="f5050"></small></sup>

                1. <ins id="f5050"></ins>
                  <tr id="f5050"><nobr id="f5050"><delect id="f5050"></delect></nobr></tr>
                2. <ins id="f5050"><video id="f5050"></video></ins><menuitem id="f5050"><acronym id="f5050"></acronym></menuitem>

                    基于EMD分解的聚類樹狀圖軸承故障診斷
                    張梅軍,韓思晨,王闖,焦志鑫
                    (解放軍理工大學 工程兵工程學院,江蘇 南京 210007)
                    摘要:針對滾動軸承故障振動信號的非平穩特征和故障征兆模糊性,提出了基于EMD和動態模糊聚類圖的軸承故障診斷方法。運用EMD方法提取待診斷的軸承運行狀態樣本的能量特征指標,應用模糊聚類分析方法對特征參數進行聚類,并作出聚類樹狀圖。結果表明,該方法不需要大量的樣本進行學習,且能更直觀、準確識別滾動軸承的運行狀態。
                    關鍵詞:EMD分解;動態模糊聚類圖;故障診斷
                    中圖分類號:O242.21        文獻標識碼:A         文章編號:10060316 (2012) 07000104
                    Clustering based on EMD decomposition tree bearing fault diagnosis
                    ZHANG Mei-jun,HAN Si-chen,WANG Chuang,JIAO Zhi-xin
                    (Engineering Institute of Engineering Corps,PLA University of Science,Nanjing 210007,China)
                    Abstract:For the non-stationary feature of a vibration signal of defective rolling bearings and the ambiguity of fault feature, a fault diagnosis method of rolling bearings is proposed using EMD ( Empirical Mode Decomposition ), Dynamic fuzzy clustering graph. Firstly, an EMD method was used to decompose a vibration signal of a rolling bearing. Then those parameters were analyzed by fuzzy clustering algorithm, and plotted amic fuzzy clustering graph. Experiments indicated that This method does not require a large number of samples for learning, and And can more intuitivelt, accurately distinguish the running state of bearings.
                    Key wordsemp iricalmode decomposition ( EMD );dynamic fuzzy clustering graph;fault diagnosis

                    ———————————————
                    收稿日期:2011-02-29
                    基金項目:國家自然科學基金資助項目(51175511)
                    作者簡介:張梅軍(1958-),女,江蘇宜興人,副教授,碩士生導師,主要研究方向為故障診斷和工程機械動力學。

                     

                    設為首頁  |  加入收藏    |   免責條款
                    《機械》雜志版權所有     Copyright©2008-2012 www.ylhqhq.com All Rights Reserved 

                      電話:028-85925070    傳真:028-85925073    E-mail:jixie@vip.163.com

                    地址:四川省成都錦江工業開發區墨香路48號   郵編:610063

                    蜀ICP備08103512號

                    Powered by PageAdmin CMS
                    国产精品狼人久久久久影院